

Techniques for Enabling Highly Efficient Message Passing on Many-Core Architectures

Min Si University of Tokyo, JAPAN msi@il.is.s.u-tokyo.ac.jp

Pavan Balaji (Co-advisor) Argonne National Laboratory, USA balaji@mcs.anl.gov

Yutaka Ishikawa (Advisor) RIKEN AICS, JAPAN yutaka.ishikawa@riken.jp

In this thesis, we investigate the characteristics of MPI on massively parallel many-core architectures and propose efficient strategies for two most popular programming models:

- Improving core utilization and commu**nication** for the hybrid MPI+thread model;
- Efficient process-based asynchronous progress for the MPI one-sided communication model.

Background

Many-Core

- Massively parallel environment
- Intel® Xeon Phi
- Blue Gene/Q

■ Hardware Characteristics

- Simple & low frequency core design
- #core increases faster than other onchip resources

■ Parallelism and Resource Sharing in Scientific Applications

- 1. Hybrid MPI+threads model
- ✓ Massive parallelism in computation
- ✓ On-chip resource sharing between threads

2. MPI RMA-based PGAS model

✓ Memory sharing across nodes

Part I. Multithreaded MPI for Hybrid MPI+Threads Model

MPI Process

COMP.

MPI COMM.

■ Problem in hybrid MPI + Threads

- Thread Funneled or Serialized mode
- Multiple threads parallelize computation
- Only one thread issues MPI calls

Funneled Mode

#pragma omp parallel

MPI_Function ();

{ /* User Computation */

Most cores are IDLE during MPI Calls

#pragma omp parallel { /* User Computation */ } MPI_Function(){ #pragma omp parallel { /* Internal Processing */ }

■ Solution: MT-MPI — Sharing Idle Threads with Application inside MPI [1]

■ OpenMP Runtime Extension

Expose number of IDLE threads

using 64 MPI processes Communication Time Speedup

■ Execution Time Speedup

Hybrid NAS MG - class E

- **MPI Internal Parallelism**
- 1. Derived datatype processing
- 2. SHM communication
- 3. InfiniBand network

Number of Threads

Challenges

- Algorithms tradeoff
 Nested parallelism
- Number of IDLE threads is unknown.

- Creates new Pthreads and offloads scheduling to OS
- Threads overrunning.

Part II. Process-based Asynchronous Progress Model for MPI RMA

Problem in MPI RMA-based PGAS

 Suitable for applications with large memory requirements. (i.e., NWChem)

MPI RMA is not truly asynchronous

Process 1

Computation

■ Solution: Casper — Process-based Asynchronous Progress Model [2]

■ Core concept

- #cores is rapidly growing
- Not all of the cores are always keeping busy
- Dedicate small & user-specified number of cores to ghost processes
- Ghost process intercepts all RMA operations to the user processes
- Improve ASYNC progress for SW-handled operations without affecting HW-handled RMA
- ✓ No multithreading or interrupt overhead
- √ Flexible core deployment
- ✓ Portable PMPI* redirection

Correctness and Performance challenges

Ensuring correctness

- 1. Lock permission for shared ghost processes
- 2. Managing multiple ghost processes
- 3. Self lock consistency
- 4. Multiple simultaneous epochs
- Ensuring performance
- 1. Memory locality

Computing Node 1

Socket 0

Portion Time (min)80
90
80

E

1440

Socket 1

Casper

Thread (D)

2800

Compute-intensive CCSD(T) simulation

Original MPI

Thread (O)

Number of Cores

NWChem Quantum Chemistry Suite

NERSC Edison Cray XC30

1920

Input tce c20 triplet

■ Traditional ASYNC Progress

1. Thread-based Approach

Process 0

ACC(data)

- Per-MPI process background thread
- × Waste half cores or oversubscription
- × Multithreading overhead in MPI

2. Interrupt-based Approach

- Per-operation hardware interrupts awaken kernel thread
- × Overhead of frequent interrupts

Reference

[1] M.Si, A.J.Pena, P.Balaji, M.Takagi, and Y.Ishikawa, "MT-MPI: Multithreaded MPI for Many-Core Environments," in Proceedings of the 28th ACM ICS, June 2014.

[2] M.Si, A.J.Pena, J.Hammond, P.Balaji ,M.Takagi, and Y.Ishikawa, "Casper: An Asynchronous Progress Model for MPI RMA on Many- Core Architectures," in IPDPS 2015.

2400

